Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables.

Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-...

متن کامل

Leveraging prognostic baseline variables to gain precision in randomized trials.

We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus c...

متن کامل

Projection Estimators for Generalized Linear Models

We introduce a new class of robust estimators for generalized linear models which is an extension of the class of projection estimators for linear regression. These projection estimators are defined using an initial robust estimator for a generalized linear model with only one unknown parameter. We found a bound for the maximum asymptotic bias of the projection estimator caused by a fraction ε ...

متن کامل

Efficient Estimators for Generalized Additive Models

Generalized additive models are a powerful generalization of linear and logistic regression models. In this paper we show that a natural regression graph learning algorithm efficiently learns generalized additive models. Efficiency is proven in two senses: the estimator’s future prediction accuracy approaches optimality at rate inverse polynomial in the size of the training data, and its runtim...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Biostatistics

سال: 2010

ISSN: 1557-4679

DOI: 10.2202/1557-4679.1138